Listado de actividades formativas EDCTI

Universidad de Granada | Escuela de Posgrado | Administración electrónica

Buscar

Listado de actividades formativas EDCTI

Descargar versión en PDF

Creatividad, integridad y comunicación en ciencia

  • Profesorado: Isabel Reche Cañabate y Francisco Perfectti Álvarez, Departamentos de Ecología y Genética, Facultad de Ciencias.
  • Duración: 30 horas lectivas presenciales y 10 horas de trabajo no presencial y tutoría grupal (presencial).
  • Fechas: Enero de 2022
  • Horario: Miércoles, jueves y viernes 12, 13, 14, 19, 20, 21, 26, 27 y 28 de enero y 2 de febrero de 2022 + Tutorías grupales.
  • Lugar: Facultad de Ciencias (aula por concretar)
  • Plazas: 25 plazas.
  • Perfil : El curso está dirigido a estudiantes de la Escuela de Doctorado de Ciencias, Tecnologías e Ingenierías (EDCTI). Se dará preferencia a estudiantes que estén cursando el primer año de doctorado, pero también está abierto a estudiantes de otros años en caso de plazas vacantes. No es necesario acreditar conocimientos previos.
  • Plazo de inscripción: Por concretar.
  • Forma de inscripción: Por concretar.
  • Justificación académica: Este curso pretende potenciar la creatividad y analizar el proceso de generación de nuevo conocimiento entre los estudiantes de doctorado. Los estudiantes han sido particularmente entrenados en el pensamiento lógico y racional, prestando poca atención al proceso de generación de ideas novedosas. La ciencia se caracteriza por aportar conocimiento contrastable, es decir riguroso y repetible. Crear ciencia exige, por lo tanto, aunar creatividad con rigor metodológico, puesto que para producir nuevo conocimiento científico es necesario plantear hipótesis falsables y preguntas precisas, aplicando la metodología más adecuada con rigor e integridad. Finalmente, además de los desafíos intelectuales inherentes al proceso de crear nuevo conocimiento, éste ha de ser transferido a otros científicos y finalmente a la sociedad. Por lo tanto, este curso se cimienta sobre tres pilares que consideramos esenciales en la generación de conocimiento: Creatividad, Rigor y Comunicación.
  • Objetivos educativos: El alumno aprenderá/comprenderá diferentes técnicas para fomentar la creatividad, la estructura social del sistema ciencia-tecnología, las fortalezas y debilidades del método científico, las buenas prácticas de laboratorio, las normas de publicación y la forma de reconocer los posibles conflictos de interés y las técnicas para hacer presentaciones efectivas dependiendo del foro de destino.

    El alumno será capaz de: desarrollar su pensamiento crítico y creativo, reconocer conflictos de interés y desarrollar soluciones, mantener un correcto cuaderno de laboratorio, estructurar adecuadamente el contenido de un manuscrito en función de la revista de destino y preparar presentaciones efectivas.
  • Programa:
Tema 1: La transición de estudiante a científico/a. Reflexiones sobre el sistema educativo. Elección de un problema científico relevante. La frontera del conocimiento. El sistema académico y científico español.
Tema 2: Creatividad y potencial creativo individual. Curiosidad y Generación de Ideas. Pensamiento creativo: Intuición, entrenamiento y placer. El proceso del descubrimiento.
Tema 3: Estrategias para fomentar la creatividad. Mentalidad de crecimiento, el pensamiento divergente, lateral y asociativo. Serendipia y oportunidad. Los errores como motor de aprendizaje.
Tema 4: Creatividad colectiva. Tormenta de ideas. Inteligencia colectiva como una propiedad emergente en grupos de investigación. Papel de la diversidad y estructura del grupo en la creatividad colectiva.
Tema 5: El método científico y la inferencia fuerte. El método hipotético-deductivo y el método inductivo en la era del bigdata. Generación de múltiples hipótesis y cómo refutar o confirmar las mismas.
Tema 6: Conducta responsable en ciencia. Origen de las buenas prácticas de laboratorio (GLP) y los sistemas de control de calidad. Integridad, plagio y fabricación. Análisis de casos. Ética en los científicos.
Tema 7: Ciencia patológica y pseudociencia. Autoengaño e interpretación ilusoria o errónea de los datos. Casos de estudio: Lysenko y el declive de la genética en la unión soviética. Pseudociencias y responsabilidad social de la ciencia.
Tema 8: La comunicación entre científicos 1. El poster y la comunicación oral. Recursos gráficos y calidad de las figuras. Técnicas de amplificación de la señal frente al ruido. Enfrentándonos al miedo escénico.
Tema 9: La comunicación entre científicos 2. El artículo científico. Importancia del título, el resumen, la calidad de las figuras y la legibilidad del texto. El párrafo como unidad de escritura. Cómo seleccionar la revista adecuada para mi investigación. Importancia de la “cover letter”. Proceso de revisión por pares y cómo aprender del rechazo. Redactar respuestas a los revisores

Scientific writing

A cargo del Centro de Lenguas Modernas

Duración: 30 h

  • 20 h instrucción-producción
  • 10 h tutorización individual

Fechas

  • CURSO 1: Del 12 al 23 de abril, 9.00-11.00 h
  • CURSO 2: Del 21 de junio a 2 de julio, 9.00-11.00 h

Lugar

  • Instrucción-producción: online sobre plataforma Moodle: AulaVirutal CLM
  • Tutorización individual: medios electrónicos

Nota: En función de la evolución de las regulaciones académicas, el curso 2 podría impartirse de forma presencial

Plazo de inscripción

  • Curso 1: del 2 al 26 marzo
  • Curso 2: del 14 de mayo al 4 de junio

Forma de inscripción

A través del formulario accesible siguiente:

ENLACE DE INSCRIPCIÓN

Plazas

  • 25 plazas por curso

Selección y requisitos

  • La selección se realizará atendiendo a los puntos siguientes y por estricto orden de llegada de solicitudes.
  • Matrícula en segundo año o superior (quedan excluidos alumnos de primer año).
  • El solicitante deberá indicar en el formulario de solicitud si dispone de certificado de un nivel lingüístico en inglés igual o superior a B2. En caso de ser seleccionado, deberá enviar antes de empezar el curso dicho certificado a --LOGIN--6cc852bdcc382206dbb83aa73808d628ugr[dot]es . En caso de no hacerlo, perderá el puesto.
  • Tendrán preferencia los que acrediten B2 o superior. No obstante, en caso de plazas vacantes el CLM llevará a cabo una prueba de nivel por orden de llegada de solicitudes hasta cubrir las plazas.
  • No se guardarán plazas en lista de espera para ediciones subsiguientes en el mismo curso académico y en cursos siguientes.

Programa de la actividad

  • 1. Introduction.

1.1 English as a lingua franca in the scientific world. 1.2 Types of papers.

  • 2. Organization.

2.1 Sections. 2.2 Content. 2.3 Format and Layout. 2.4 Common errors.

  • 3. Language.

3.1 Syntax and sentence structure. 3.2 Semantics and terminology. 3.3 Style and punctuation. 3.4 Common errors.

  • 4 Strategies.

4.1 Keeping notes, annotations, notekeeping systems. 4.2 Keeping track of references. 4.3 Translation: problems and pitfalls. 4.4 Revising. 4.5 Expectations: Style guides, avoiding plagiarism, bibliography. 4.6 Useful links and tools.

Multivariate Exploratory Data Analysis (MEDA): Understanding by looking at data

  • Date: 12-16th July 2021
  • Participants: 30
  • Deadline for application: 24th May - 14th June 2021
  • How to apply: The registration form will be activated at the beginning of the application period.
  • NOTES
- Depending on the Covid situation, the course will be held presentailly or virtually.
- The course will be held in English.
- It is requiered basic knowledge of MatLab. Those students who can provide certification of that knowledge will have preference in admission.
  • Course Goal

Do you have complicate data? Difficult to understand? With thousands of variables/observations? Or with too little observations? Missing data? Time series? Multiple sources? Big Data?

The course goal is to introduce the students to very powerful data visualization techniques to look into your data set. There is a bunch of Machine Learning (ML) methods that can do difficult tasks (like classification, modelling and prediction) using a black-box approach over data, deep learning being a popular example. This course shows a totally different approach to handling data, using ML only as an instrument (as a means) to understand your data. MEDA will show you how to look into your data set, regardless its complexity, so that you can find groups of individuals and classify them, understand relationships among measured quantities, detect anomalies, find parsimonious models, etc.

The course is led by Professor Rasmus Bro, world leading professor on data analysis in biological and food sciences, and his collaborator at the UGR Dr. José Camacho, specialist on data analysis in Big Data and Exploratory Data Analysis.

  • Teaching hours: 30
  • Teachers:

Professor Bro is a prominent figure in the field of data analysis and in particular in multivariate analysis. During the last two decades, Prof. Bro has been a principal actor in the development of multivariate analysis in chemical and biological applications in the chemometrics area, in which according to google scholar is the second top researcher. His vast research work is outstanding, presenting an H index equal to 65. Prof. Bro is the author of the most referenced tutorial of PARAFAC (1933 citations), the developer of an extensively used multi-way version of Partial Least Squares (N-PLS) and co-author of more than 200 publications mainly related to the use of multi-way analysis in real life applications. His contributions to the use of constrained modelling are also very relevant, including the use of sparse methodologies for data analysis, and he has co-authored relevant articles to the problem of data fusion, a main challenge in Big Data analyses. The international influence in the community of his course “Multi-way Analysis” and his monograph “Multi-way Analysis: applications in the chemical sciences” is widely recognized. Prof. Bro has taught courses on data analysis in dozens of public and private organizations around the world. From 2001, he is the head of ODIN, an industrial research consortium offering courses, workshops, international contacts and student collaboration.

José Camacho is an associate professor in the Department of Signal Theory, Networking and Communications and researcher in the Information and Communication Technologies Research Centre, CITIC for its initials in Spanish, and in the Network Engineering & Security Group (NESG), both at the University of Granada, Spain. His research interests include exploratory data analysis, anomaly detection and optimization with multivariate techniques applied to data of very different nature, including industrial processes, chemometrics and communication networks. He is especially interested in the use of exploratory data analysis to Big Data.

  • Examination:

Every person analyze their own data under supervision of the teacher and writes a report. The report must be short and concise. A short description of the data and their background must be provided. A short description of aim of the present work must be provided. This aim is not necessarily the overall aim of the project from which the data stem (although this is of course nice). Rather the purpose should be chosen in order to test and evaluate the students’ ability to use the methods taught at the course. It is important to discuss in detail how the models have been critically used for the stated purposes.

  • Schedule: ONLINE

Day 1: PCA (Prof. Bro & Dr. Camacho)

8:30-9:30Welcome (Bro & Camacho)
9:30-10:00Introduction and algebra without tears
10:00-11:15Principal Component Analysis – PCA
11:15-11:30 Break
11:30-12:00Software introduction (demos/hands-on)
12:00-12:30Exercises – PCA
12:30-13:30Validation, outliers – PCA
13:30-15:30 Lunch
15:30-17:00Exercises – PCA

Day 2: PLS (Prof. Bro)

9:00-9:15PCA summary
9:15-10:30Multivariate calibration - PLS
10:30-10:45 Break
10:45-11:30Exercises – Multivariate calibration
11:30-13:00Validation and outliers incl. exercises
13:00-15:00 Lunch
15:00-16:00Preprocessing and nice to know
16:00-16:15 Break
16:15-18:00Competition!

Day 3: MEDA Toolbox (Dr. Camacho)

9:00-10:00Introduction to the MEDA Toolbox
10:00-11:15Using the command line interface
11:15-11:30 Break
11:30-12:30Advanced Exploratory Data Analysis
12:30-13:30Exercises & Examples
13:30-15:30 Lunch
15:30-17:00Exercises

Day 4: Big Data (Dr. Camacho)

9:00-11:00Extensions to Big Data: Big Observations
11:00-11:30 Break
11:30-12:30Exercises
12:30-13:30Extensions to Big Data: Big Variables
13:30-15:30 Lunch
15:30-17:00Exercises

Day 5: Playing with your data I (Prof. Bro & Dr. Camacho)

Time will be devoted to analyze your own data under the supervision of the course monitors, who will guide you through different analysis techniques to pursue your goals.

9:00-14:00Playing with your data

Curso de LaTeX Avanzado

Curso 2020/2021

Hay vida después de Word y PowerPoint!. Este curso está orientado al uso avanzado de LaTeX (software libre), para el maquetado de alta calidad de documentos técnicos y científicos. Se profundizará en la elaboración de material gráfico de interés en diferentes áreas de la Ciencia, Tecnología, e Ingeniería. Está especialmente orientado a alumnos de Doctorado y Master que necesitan publicar artículos, informes técnicos, proyectos, Tesis o Libros.

  • Fechas y horario: 10 a 21 de mayo 2021 Lunes - Viernes, 9-11 hrs
  • Plazas: 20.
  • Lugar: VIRTUAL
  • Modo de solicitud: del 12 al 22 de abril a través del formulario disponible en este ENLACE (se activará una vez iniciado el plazo de solicitud):

LaTeX Avanzado: Aplicación en Ciencias, Tecnologías e Ingenierías

  • Motivación:

El curso surge para dotar al alumnado de doctorado y máster de unas herramientas informáticas apropiadas para aumentar su productividad científica. Tiene como objetivo facilitar el proceso de elaboración de los resultados de investigación, haciendo hincapié en la generación de material gráfico. LaTeX es la herramienta ideal, pero debido a la gran cantidad de opciones disponibles, puede parecer difícil de dominar. Este curso tiene como principal objetivo guiar al alumnado de una manera sencilla y gradual para que se conviertan en usuario avanzado de LaTeX.

  • Requisitos previos:

Conocimientos básicos de LaTeX. Que preferentemente deberían incluir: instalación, compilación, visor/editor de documentos. Se recomienda saber elaborar un documento básico, y conocer funcionalidades elementales como: tablas, bloques, comandos básicos, etc.

  • Perfil:

El curso está dirigido a estudiantes de la Escuela de Doctorado de Ciencias, Tecnologías e Ingenierías (EDCTI)

  • Contenidos:
- Módulo 1: Maquetación de textos en LaTeX y Beamer para presentaciones.
- Módulo 2: Gráficos Vectoriales y uso de paquetes CTAN en LaTeX Ciencias, Tecnologías e Ingenierías.
- Módulo 3: Herramientas avanzadas en plantillas de LaTeX
  • Duración:

20 hrs lectivas presenciales (teórico prácticas), y 32 hrs de trabajo del alumno (2 créditos ECTS). Clases de 2 hrs/diarias. Horario de mañana durante 2 semanas.

  • Profesorado responsable:

- Jose A. Dobado Catedrático de Univ.). Dpto. Química Orgánica. Fac. de Ciencias.

- Isaac Vidal Daza (Escala Técnica Informática). Apoyo a la Docencia. CSIRC

  • Evaluación:

La superación del curso requerirá:

- Asistencia de al menos 70 % de las sesiones (50 % puntuación).

- Elaboración de un documento maquetado con LaTeX (25 % puntuación).

- Defensa oral con Beamer del trabajo realizado. (25 % puntuación).

  
  • Objetivos de Aprendizaje:
  1. Adquirir un nivel avanzado en la maquetación de textos científicos.
  2. Desarrollo de destrezas informáticas orientadas a la mejora de la productividad en el desarrollo de las tareas investigadoras.
  • Programa:

MÓDULO 1: Uso Avanzado de LaTeX para maquetación de textos y Beamer para presentaciones (8 hrs)

Día 1: LaTeX avanzado (2 hrs)

  1. diseño de tablas, trabajo con imágenes y creación de gráficos
  2. ecuaciones y fórmulas
  3. funcionalidades avanzadas en LaTeX

Día 2: Generación de presentaciones con Beamer (2 hrs)

  1. uso de temas y apariencia, organización de contenido
  2. creación de diapositivas, ventanas, bloques y entornos
  3. plantillas de presentaciones y contenido dinámico

Día 3: Bases de datos con Biber y BibTeX (2 hrs)

  1. estilos bibliográficos, personalización
  2. bases de datos bibliográficas
  3. uso de internas/externas/varias

Día 4: Uso de plantillas con LaTeX para el maquetado de los resultados de la investigación (2 hrs)

  1. Plantillas de artículos científicos (ACS, RSC, Wiley, Elsevier, etc.)

MÓDULO 2: Gráficos vectoriales y uso de paquetes de LaTeX en Ciencias, Tecnologías e Ingeniería (6 hrs)

Día 5: PGF/TikZ (2 hrs)

  1. elementos básicos, líneas, caminos, sombreado, formas, colores
  2. otros comandos: nodos, variables, contadores, ciclos, recorte, alcance
  3. uso de librerías y ejemplos de dibujos

Días 6-7: Paquetes CTAN de CIENCIAS, TECNOLOGÍAS E INGENIERÍAS (4 hrs)

  1. dibujo de fórmulas química, reacciones y moléculas.
  2. gráficas de alineado de nucleótidos, péptidos, etc
  3. dibujo de circuitos eléctricos.
  4. escritura de algoritmos, códigos y diagramas de flujo
  5. dibujo de diagramas en ingeniería civil y de una planta química

MÓDULO 3: Herramientas avanzadas en plantillas de LaTeX y presentación de trabajos (6 hrs)

Días 8-9: Maquetación avanzada en LaTeX (4 hrs)

  1. Tesis Doctorales
  2. técnicas avanzadas de índices y glosarios

Día 10: Presentación de trabajos (2 hrs)

  1. mini-exposiciones de trabajos orales y escritos
  2. discusión de resultados
  • Contacto:

Jose A. Dobado Facultad de ciencias
http://www.ugr.es/local/dobado
dobado@ugr.es

Introducción a Python: Elementos básicos del lenguaje

  • Profesorado: Patricia Ruano Roca (UGR)
  • Duración: 20 horas presenciales
  • Fechas y horario: del 31 de mayo al 11 de junio 2021 de 12:00 a 14:00h.
  • Lugar: VIRTUAL

Se necesita portátil propio (Mac o PC).

  • Plazas y perfil: 15 plazas/edición. Dirigido preferentemente a alumnos/as de primer año de doctorado.
  • Justificación académica:

Python es uno de los mejores lenguajes para su uso científico y técnico. Tiene algunas características que lo hacen realmente interesante en este ámbito, como son; es interpretado, de alto nivel, muy fácil de aprender, fácilmente extensible y cuenta con una librería estándar con mucha funcionalidad. Este lenguaje está siendo actualmente utilizado por instituciones científicas como la NASA, JPL, y otras como Google, DreamWorks, Disney, etc. Alguna de las características que hacen de Python el lenguaje ideal para cálculos científicos son:

- Es un lenguaje muy fácil de aprender, siendo el lenguaje más recomendado para usuarios que no cuentan con conocimientos de programación.

- Es de código libre, por lo que no requiere una licencia para su uso.

- Es multiplataforma, pudiéndose utilizar en diferentes Sistemas Operativos com MAC, LINUX, Windows, etc.

- Python es un lenguaje de programación real, con todas las características de un lenguaje de programación orientado a objetos, a diferencia de otros lenguajes como matlab que carecen de algunas funcionalidades en este sentido.

- Tiene multitud de módulos y librerías externos que realizan numerosas funciones de gran utilidad para científicos e ingenieros. A este respecto, módulos específicos para realizar cálculos científicos como numpy, matplotlib y scipy, han hecho que este lenguaje esté ganando cada vez más popularidad entre científicos e ingenieros.

- Se integra perfectamente con LaTeX, permitiendo el formateo de ecuaciones y la realización de figuras para artículos científicos o informes técnicos.

- Es extensible y altamente configurable. Librerías como matplotlib permiten realizar infinidad de gráficos de muy alta calidad e interactivos.

En este curso se verán los elementos básicos de un lenguaje de programación como Python; sintaxis, funciones principales, flujos condicionales y bucles, etc. El conocimiento de las bases del lenguaje es un paso previo fundamental para poder sacar el mayor rendimiento de las librerías específicas más utilizadas en los ámbitos científico y técnico.

  • Objetivos educativos, profesionales y competencias generales adquiridas

El alumno sabrá:

1.- Los elementos básicos de un lenguaje de programación

2.- Tipos de variables y su manipulación

3.- Manipulación de listas, tuplas y diccionarios

4.- Flujos condicionales if y recursivos for

5.- Funciones básicas del lenguaje

6.- Creación de funciones propias

7.- Control de código y manejo excepciones

El alumno será capaz de:

1.- Crear scripts en python para resolver problemas

2.- Leer y analizar un programa escrito en Python

3.- Manejar los principales entornos de programación con IPython (Spyder y Jupyter)

4.- Leer y escribir datos en ficheros de texto

5.- Diseñar algoritmos para la resolución secuencial de problemas

6.- Depurar programas y reconocer los principales tipos de errores

  • Programa:

Tema 1. Introducción (1h) Introducción a los lenguajes de programación Historia de Python Descarga e instalación de anaconda. La consola de Python. Partes principales del IDE Spyder.

Tema 2. Tipos básicos, variables y expresiones (4h) Tipos de datos en Python. Variables, operadores y expresiones. Instalar, importar y utilizar módulos en Python. Listas, tuplas y diccionarios.

Tema 3. Operadores y funciones (4h) Operador lógico if. Bucles for. Bucles while. Creación y utilización de funciones en Python.

Tema 4. Operación de entrada/salida y optimización de código (3h) Lectura de ficheros de texto. Escritura en archivos de texto. Módulos os y sys. Control de ficheros y directorios. Optimización de código. Tipos de errores principales en Python. Control de código y manejo excepciones.

Python avanzado para ciencia e ingeniería

  • Profesorado: José Vicente Pérez Peña (UGR)
  • Duración: 20 horas presenciales.
  • Fechas y horario: 14 a 25 junio 2021 de 12:00 a 14:00h
  • Lugar: por determianr

Se necesita portátil propio (Mac o PC).

  • Plazas y perfil: 15 plazas. Dirigido preferentemente a alumnos/as de segundo año de doctorado con conocimientos de Python.

Para este curso es necesario acreditar un conocimiento básico del lenguaje Python 3. Con el fin de evaluar los conocimientos de Python requeridos, antes del inicio del curso se realizará un cuestionario online a los solicitantes. Los estudiantes que no superen la prueba, no se admitirán en el curso.

  • Plazo de inscripción: 14 a 28 de mayo 2021

En caso de que haya más solicitudes que plazas se seleccionarán los alumnos/as según su adecuación al perfil del curso y el orden de inscripción.

  • Justificación académica:

Python es uno de los mejores lenguajes para su uso científico y técnico. Tiene algunas características que lo hacen realmente interesante en este ámbito, como son; es interpretado, de alto nivel, muy fácil de aprender, fácilmente extensible y cuenta con una librería estándar con mucha funcionalidad. Este lenguaje está siendo actualmente utilizado por instituciones científicas como la NASA, JPL, y otras como Google, DreamWorks, Disney, etc. En el ámbito científico y técnico, python se está abriendo paso de forma firme gracias a librerías específicas como numpy, matplotlib y scipy. El uso de estas librerías ofrece a los usuarios de Python una infinidad de recursos matemáticos y científicos para la resolución de problemas complejos y la creación de gráficos de muy alta calidad. Algunas de las operaciones básicas utilizadas en cálculo y programación científico-técnica incluyen matrices, integrales, ecuaciones diferenciales, estadística, etc. Python en su paquete básico no cuenta por defecto con funciones para realizar este tipo de cálculos directamente. Así mismo, los tipos básicos de variables de Python no están optimizados para el manejo de gran cantidad de datos. NumPy y SciPy son dos librerías muy potentes que cuentan con toda esta funcionalidad de la que carece el paquete básico de Python, y por tanto que posibilitan la utilización de este lenguaje para fines científicos y técnicos. La librería de numpy se especializa en el procesado numérico utilizando matrices multidimensionales, y permite un cálculo matricial directo al igual que programas especializados como matlab. Así mismo cuenta con métodos y funciones para la creación, manejo, redimensionado, etc., de matrices, lo cual reduce considerablemente el esfuerzo de programación requerido en otros lenguajes. La librería de matplotlib es una librería gráfica que toma todas las ventajas de numpy. Permite la creación de infinidad de gráficos de alta calidad (ráster y vectorial), así como la modificación de todas sus características. Matplotlib no solo se integra perfectamente con numpy, sino que permite el lenguaje de marcado de LaTeX, pudiendo crear gráficos de muy alta calidad para publicaciones científicas e informes técnicos.

SciPy va un paso más allá, y utiliza toda la funcionalidad de numpy para realizar cálculos matemáticos avanzados como la integración, diferenciación, algebra lineal, no lineal, etc. También cuenta con multitud de funciones de alto nivel para el tratamiento estadístico de los datos. Una lista completa de todas las funciones de numpy, matplotlib y scipy ocuparía cientos de páginas, por lo que en este curso se tratarán las funciones más utilizadas. Se introducirá al alumno en las rutinas de trabajo con estas librerías y a la resolución de los problemas más comunes en ciencia e ingeniería. Con este curso también se pretende que el alumno tenga los conocimientos necesarios para entender la documentación de estas librerías con el fin de capacitarlo para poder utilizar funcionalidad específica de las mismas no tratada en este curso.

  • Objetivos educativos, profesionales y competencias generales adquiridas

El alumno sabrá:

1.- Manejo de matrices multidimensionales con numpy

2.- Funciones básicas para la creación y utilización de matrices de numpy

3.- Lectura-escritura en disco de datos

4.- Creación y representación de funciones matemáticas

5.- Creación de distintos gráficos con matplotlib

6.- Modificación de símbolos y leyendas

7.- Análisis de imagen con scipy

El alumno será capaz de:

1.- Crear y modificar gráficos

2.- Integrar LaTeX directamente en un gráfico

3.- Representar funciones y resolver ecuaciones matemáticas

4.- Entender la documentación de las librerías de Python

5.- Realizar cálculos matemáticos de alto nivel y resolución de problemas complejos

  • Programa formativo:

Tema 1. Manejo de datos con numpy (4h) Constantes y funciones de numpy. Arrays de numpy. Métodos para la creación de arrays. Operaciones con arrays. Indexado y slicing en arrays. Leer y guardar arrays en archivos de texto.

Tema 2. Representación gráfica con matplotlib (4h) Representación básica de funciones Representación de varias curvas. Representación de nube de puntos Representación de histogramas y boxplots. Definiendo colores y símbolos. Añadiendo leyendas y etiquetas. Control de ejes. Representación de múltiples figuras.

Tema 3. Análisis numérico con scipy (2h) Ajuste e interpolación de datos. Tratamiento multidimensional de imágenes con ndimage.

Tema 4. Breve introducción a cython (2h). Creación y compilación de scripts usando Cython. Elementos básicos del lenguaje. Optimización de código con Cython.

Herramientas de búsqueda y gestión de información para el desarrollo de la Investigación

  • Profesores/as que la imparten: Anne-Vinciane Doucet, Antonio Fernández Porcel, Mª Ángeles García Gil, Esteban López García y Daniel Marín Conesa
  • Duración: 10-13 horas
  • Fechas de realización: Del 25 al 27 de mayo de 2021
  • Plazo de solicitud: 3-9 mayo 2021
  • Lugar de realización: Aula B1 del Aulario de Posgrado (Ubicación Avenida de Madrid)
  • Horario: de 10:00 a 13:00
  • Perfil: Dirigido a alumnos/as de primer año
  • Nº Alumnos: 40
  • Programa de la actividad:

El curso consta de tres módulos:

1. Perfil de investigador:
- El perfil de investigador. Utilidad y necesidad.
- Necesidad de normalización del nombre de investigador.
-Números de identificación: ORCID, ResearcherID (WoS), Author ID (Scopus).
-Perfil y difusión de la investigación: ventajas y “herramientas”: UGR-Investiga, Google Scholar, Academia.edu, ResearchGate. Dialnet.
-El perfil de investigador y la evaluación de la producción científica. ANECA, DEVA y SICA. El CVN.
2. Bases de datos:
- Bases de datos en: Ciencias, Tecnologías e Ingenierías y Ciencias de la Salud: JCR-Science, JCR-Social Science WOS, SCOPUS
- Bases de datos en: Humanidades, Ciencias Sociales y Jurídicas: JCR-Social Science, Arts and Humanities Citation Index, Dialnet
3. Gestores bibliográficos:
- Introducción a los gestores bibliográficos
- Gestores bibliográficos: Mendeley, Flow, Endnote




    

Actividades Generales y de otras Escuelas de Doctorado

Actividades específicas de los programas de doctorado

Actividades transversales anteriores