Listado de actividades formativas EDCTI

Universidad de Granada | Escuela de Posgrado | Administración electrónica

Buscar

Listado de actividades formativas EDCTI

Descargar versión en PDF

EDCTI LECTURE SERIES: Crónicas de la Tierra

  • Ciclo de Conferencias ”Crónicas de la Tierra”

Organizado por la Academia de Ciencias Matemáticas, Físico-Químicas y Naturales de Granada y la Escuela de Doctorado de Ciencias, Tecnologías e Ingenierías de la UGR.

Debido a medidas sanitarias, el evento se ofrecerá en línea.

El público deberá silenciar su micrófono al conectarse (desconectar la cámara es opcional). Con posterioridad a cada conferencia se abrirá un turno de preguntas y debate entre el conferenciante y los asistentes.

Por razones de logística, no se ofrecerá certificado de asistencia

  • 1.- Martes 29 de Septiembre 2020, 17.00 h. "Auto-organización mineral en la Tierra primitiva"

Por: Juan Manuel García Ruiz. Profesor de Investigación. Instituto Andaluz de Ciencias de la Tierra (CSIC). Académico.

  • 2.- Miércoles 30 de Septiembre 2020, 17.00 h. "La ruta del Jade pre-colombino en Mesoamérica-Caribe"

Por: Antonio García Casco. Catedrático de Petrología y Geoquímica de la UGR. Director de la Escuela de Doctorado de Ciencias, Tecnologías e Ingenierías.

  • 3.- Octubre 2020 (día por concretar), 17.00 h. “La desconocida infancia del planeta Tierra”

Por: Fernando Bea Barredo. Catedrático de Petrología y Geoquímica de la UGR. Académico

  • 4.- Octubre 2020 (día por concretar), 17.00 h. "La investigación geológica española en el Sahara Occidental”

Por: Francisco González Lodeiro. Profesor Emérito. Dpto. de Geodinámica de la UGR. Académico

Curso de LaTeX Avanzado

  • Curso 2020/2021

Hay vida después de Word y PowerPoint!. Este curso está orientado al uso avanzado de LaTeX (software libre), para el maquetado de alta calidad de documentos técnicos y científicos. Se profundizará en la elaboración de material gráfico de interés en diferentes áreas de la Ciencia, Tecnología, e Ingeniería. Está especialmente orientado a alumnos de Doctorado y Master que necesitan publicar artículos, informes técnicos, proyectos, Tesis o Libros.

  • Horario: Lunes - Viernes, 9-11 hrs
  • Plazas: sin límite de plazas
  • Lugar: Aulas de informática (Facultad de Ciencias)

LaTeX Avanzado: Aplicación en Ciencias, Tecnologías e Ingenierías

  • Motivación

El curso surge para dotar al alumnado de doctorado y máster de unas herramientas informáticas apropiadas para aumentar su productividad científica. Tiene como objetivo facilitar el proceso de elaboración de los resultados de investigación, haciendo hincapié en la generación de material gráfico. LaTeX es la herramienta ideal, pero debido a la gran cantidad de opciones disponibles, puede parecer difícil de dominar. Este curso tiene como principal objetivo guiar al alumnado de una manera sencilla y gradual para que se conviertan en usuario avanzado de LaTeX.

  • Requisitos previos:

Conocimientos básicos de LaTeX

Que preferentemente deberían incluir: instalación, compilación, visor/editor de documentos. Se recomienda saber elaborar un documento básico, y conocer funcionalidades elementales como: tablas, bloques, comandos básicos, etc.

  • Material:

Aulas de Informática (Facultad de Ciencias)

Se utilizará los equipos disponibles junto con los programas de (LaTeX) instalados en los ordenadores de las aulas de informática.

  • Perfil:

El curso está dirigido a estudiantes de doctorado de:

- Escuela de Doctorado de Ciencias, Tecnologías e Ingenierías (EDCTI)
- Escuela de Doctorado de Ciencias de la Salud (EDCS)
  • Contenidos:

- Módulo 1: Maquetación de textos en LaTeX y Beamer para presentaciones.

- Módulo 2: Gráficos Vectoriales y uso de paquetes CTAN en LaTeX Ciencias, Tecnologías e Ingenierías.

- Módulo 3: Herramientas avanzadas en plantillas de LaTeX

  • Duración:

20 hrs lectivas presenciales (teórico prácticas), y 32 hrs de trabajo del alumno (2 créditos ECTS). Clases de 2 hrs/diarias. Horario de mañana durante 2 semanas.

  • Profesorado responsable:

- Jose A. Dobado Catedrático de Univ.). Dpto. Química Orgánica. Fac. de Ciencias.

- Isaac Vidal Daza (Escala Técnica Informática). Apoyo a la Docencia. CSIRC

  • Evaluación:

La superación del curso requerirá:

- Asistencia de al menos 70 % de las sesiones (50 % puntuación).

- Elaboración de un documento maquetado con LaTeX (25 % puntuación).

- Defensa oral con Beamer del trabajo realizado. (25 % puntuación).

  • Objetivos del Aprendizaje:

- Adquirir un nivel avanzado en la maquetación de textos científicos.

- Desarrollo de destrezas informáticas orientadas a la mejora de la productividad en el desarrollo de las tareas investigadoras.

MÓDULO 1: Uso Avanzado de LaTeX para maquetación de textos y Beamer para presentaciones (8 hrs)

Día 1: LaTeX avanzado (2 hrs)

- diseño de tablas, trabajo con imágenes y creación de gráficos
- ecuaciones y fórmulas
- funcionalidades avanzadas en LaTeX

Día 2: Generación de presentaciones con Beamer (2 hrs)

- uso de temas y apariencia, organización de contenido
- creación de diapositivas, ventanas, bloques y entornos
- plantillas de presentaciones y contenido dinámico

Día 3: Bases de datos con Biber y BibTeX (2 hrs)

- estilos bibliográficos, personalización
- bases de datos bibliográficas
- uso de internas/externas/varias

Día 4: Uso de plantillas con LaTeX para el maquetado de los resultados de la investigación (2 hrs)

- Plantillas de artículos científicos (ACS, RSC, Wiley, Elsevier, etc.)

MÓDULO 2: Gráficos vectoriales y uso de paquetes de LaTeX en Ciencias, Tecnologías e Ingeniería (6 hrs)

Día 5: PGF/TikZ (2 hrs)

- elementos básicos, líneas, caminos, sombreado, formas, colores
- otros comandos: nodos, variables, contadores, ciclos, recorte, alcance
- uso de librerías y ejemplos de dibujos

Días 6-7: Paquetes CTAN de CIENCIAS, TECNOLOGÍAS E INGENIERÍAS (4 hrs)

- dibujo de fórmulas química, reacciones y moléculas.
- gráficas de alineado de nucleótidos, péptidos, etc
- dibujo de circuitos eléctricos.
- escritura de algoritmos, códigos y diagramas de flujo
- dibujo de diagramas en ingeniería civil y de una planta química

MÓDULO 3: Herramientas avanzadas en plantillas de LaTeX y presentación de trabajos (6 hrs)

Días 8-9: Maquetación avanzada en LaTeX (4 hrs)

- Tesis Doctorales
- técnicas avanzadas de índices y glosarios

Día 10: Presentación de trabajos (2 hrs)

- mini-exposiciones de trabajos orales y escritos
- discusión de resultados
  • Contacto:

Jose A. Dobado Facultad de ciencias
http://www.ugr.es/local/dobado
--LOGIN--95383f99518311159250082d65ba79b6ugr[dot]es

Técnicas estadísticas básicas aplicadas en Ciencias Experimentales: fundamentos, interpretación e implementación en R

  • Curso 2020/2021
  • Justificación académica del curso:

Es incuestionable la importancia que en las últimas décadas ha experimentado la aplicación de numerosas técnicas probabilístico-estadísticas en múltiples campos de aplicación. La razón última de ello viene motivada por la necesidad de describir y explicar la evolución de fenómenos, no sólo desde un punto de vista cualitativo sino cuantitativo, a la vez que se hace imprescindible en múltiples ocasiones poder inferir comportamientos futuros de los sistemas que son objeto de estudio.

El objetivo del curso es presentar una panorámica general, sobre todo desde el punto de vista de la aplicación de las técnicas presentadas en múltiples campos. En ese sentido, la idea principal de esta actividad es ilustrar a los alumnos sobre técnicas y métodos estadísticos mostrando una visión general de sus fundamentos así como una perspectiva de aplicaciones en diversos campos. Se hará especial hincapié sobre los fundamentos, condiciones de aplicabilidad e interpretación de resultados que ayuden a una mejor descripción de los fenómenos estudiados por los alumnos en el desarrollo de sus investigaciones. Otro de los objetivos del curso es el de mostrar la implementación de estas técnicas mediante R, introduciendo al alumno en el empleo de uno de los programas que mayor difusión ha adquirido en los últimos años.

  • Programa:

1. Principios generales de inferencia. Modelos básicos: Problema de una muestra. Problema de dos muestras independientes y apareadas. Contrastes paramétricos y no paramétricos para una y dos muestras.

2. Modelos de regresión:

a. Regresión lineal simple y múltiple.
b. Regresión logística binomial y multinomial. Regresión de Poisson. Regresión de Cox.

3. Análisis de datos categóricos: Independencia y asociación en tablas bidimensionales. Independencia condicional y asociación parcial. Metodología de Mantel-Hanzel

4. Técnicas de Análisis Multivariante: Modelo Lineal Multivariante: modelo de Regresión lineal múltiple multivariante y técnicas tipo MANOVA. Técnicas de reducción de dimensiones. Técnicas de clasificación automática.

  • Duración: 20 horas presenciales.
  • Periodo de impartición: Por determinar.
  • Actividades paralelas:

Se propondrá a los alumnos la realización de ejemplos de aplicación para la realización de prácticas individualizadas y tutorizadas de forma personalizada. De forma alternativa, esas prácticas podrían consistir en el asesoramiento estadístico sobre problemas concretos relacionados con el desarrollo de su tesis doctoral. Esta parte constituirá la evaluación final que determinará el grado de aprovechamiento del curso. Para dicha supervisión y evaluación, los estudiantes serán repartidos entre el profesorado.

  • Carga docente total imputable: 2.5 créditos
  • Ponentes:
Dra. María del Mar Rueda García. Carga docente: 0.5 créditos.
Dra. Ana María Aguilera del Pino. Carga docente: 0.5 créditos.
Dra. Beatriz Cobo Rodríguez. Carga docente: 1 crédito.
Dr. Francisco de Asís Torres Ruiz. Carga docente: 0.5 créditos.

Multivariate Exploratory Data Analysis (MEDA): Understanding by looking at data

  • May 26th-29th 2020
  • Deadline for application: 29th April 2020 - 7th May 2020
  • NOTES
- Course on line.
- The course will be held in English.
- It is requiered basic knowledge of MatLab. Those students who can provide certification of that knowledge will have preference in admission.
  • Course Goal

Do you have complicate data? Difficult to understand? With thousands of variables/observations? Or with too little observations? Missing data? Time series? Multiple sources? Big Data?

The course goal is to introduce the students to very powerful data visualization techniques to look into your data set. There is a bunch of Machine Learning (ML) methods that can do difficult tasks (like classification, modelling and prediction) using a black-box approach over data, deep learning being a popular example. This course shows a totally different approach to handling data, using ML only as an instrument (as a means) to understand your data. MEDA will show you how to look into your data set, regardless its complexity, so that you can find groups of individuals and classify them, understand relationships among measured quantities, detect anomalies, find parsimonious models, etc.

The course is led by Professor Rasmus Bro, world leading professor on data analysis in biological and food sciences, and his collaborator at the UGR Dr. José Camacho, specialist on data analysis in Big Data and Exploratory Data Analysis.

  • Teaching hours: 30
  • Teachers:

Professor Bro is a prominent figure in the field of data analysis and in particular in multivariate analysis. During the last two decades, Prof. Bro has been a principal actor in the development of multivariate analysis in chemical and biological applications in the chemometrics area, in which according to google scholar is the second top researcher. His vast research work is outstanding, presenting an H index equal to 65. Prof. Bro is the author of the most referenced tutorial of PARAFAC (1933 citations), the developer of an extensively used multi-way version of Partial Least Squares (N-PLS) and co-author of more than 200 publications mainly related to the use of multi-way analysis in real life applications. His contributions to the use of constrained modelling are also very relevant, including the use of sparse methodologies for data analysis, and he has co-authored relevant articles to the problem of data fusion, a main challenge in Big Data analyses. The international influence in the community of his course “Multi-way Analysis” and his monograph “Multi-way Analysis: applications in the chemical sciences” is widely recognized. Prof. Bro has taught courses on data analysis in dozens of public and private organizations around the world. From 2001, he is the head of ODIN, an industrial research consortium offering courses, workshops, international contacts and student collaboration.

José Camacho is an associate professor in the Department of Signal Theory, Networking and Communications and researcher in the Information and Communication Technologies Research Centre, CITIC for its initials in Spanish, and in the Network Engineering & Security Group (NESG), both at the University of Granada, Spain. His research interests include exploratory data analysis, anomaly detection and optimization with multivariate techniques applied to data of very different nature, including industrial processes, chemometrics and communication networks. He is especially interested in the use of exploratory data analysis to Big Data.

  • Examination:

Every person analyze their own data under supervision of the teacher and writes a report. The report must be short and concise. A short description of the data and their background must be provided. A short description of aim of the present work must be provided. This aim is not necessarily the overall aim of the project from which the data stem (although this is of course nice). Rather the purpose should be chosen in order to test and evaluate the students’ ability to use the methods taught at the course. It is important to discuss in detail how the models have been critically used for the stated purposes.

  • Schedule: ONLINE

Day 1: PCA (Prof. Bro & Dr. Camacho)

8:30-9:30Welcome (Bro & Camacho)
9:30-10:00Introduction and algebra without tears
10:00-11:15Principal Component Analysis – PCA
11:15-11:30 Break
11:30-12:00Software introduction (demos/hands-on)
12:00-12:30Exercises – PCA
12:30-13:30Validation, outliers – PCA
13:30-15:30 Lunch
15:30-17:00Exercises – PCA

Day 2: PLS (Prof. Bro)

9:00-9:15PCA summary
9:15-10:30Multivariate calibration - PLS
10:30-10:45 Break
10:45-11:30Exercises – Multivariate calibration
11:30-13:00Validation and outliers incl. exercises
13:00-15:00 Lunch
15:00-16:00Preprocessing and nice to know
16:00-16:15 Break
16:15-18:00Competition!

Day 3: MEDA Toolbox (Dr. Camacho)

9:00-10:00Introduction to the MEDA Toolbox
10:00-11:15Using the command line interface
11:15-11:30 Break
11:30-12:30Advanced Exploratory Data Analysis
12:30-13:30Exercises & Examples
13:30-15:30 Lunch
15:30-17:00Exercises

Day 4: Big Data (Dr. Camacho)

9:00-11:00Extensions to Big Data: Big Observations
11:00-11:30 Break
11:30-12:30Exercises
12:30-13:30Extensions to Big Data: Big Variables
13:30-15:30 Lunch
15:30-17:00Exercises

Day 5: Playing with your data I (Prof. Bro & Dr. Camacho)

Time will be devoted to analyze your own data under the supervision of the course monitors, who will guide you through different analysis techniques to pursue your goals.

9:00-14:00Playing with your data

III Edición. Curso Básico de Análisis de Datos en R

  • Profesorado:
- Antonio Jesús Muñoz Pajares (Dpto. Genética)
- Ana María Aguilera del Pino (Dpto. Estadística e I.O.)
- José María Conde Porcuna (Dpto. Ecología)
- Juan Lorite Moreno (Dpto. de Botánica)
- Rafael Rubio de Casas (Dpto. Ecología)
- María del Mar Rueda García (Dpto. Estadística e I.O.)
- Francisco de Asís Torres Ruiz (Dpto. Estadística e I.O.)
  • Duración del curso (horas teóricas/prácticas):

36 horas (29 horas de clases teórico-prácticas + 7 horas tutorías)

Horas no presenciales de los estudiantes: 25 horas de estudio/trabajo

  • Calendario y horario:

Durante el año 2020 se impartirán las clases presenciales en junio-julio (por determinar en función de la evolución de la situación del coronavirus)

Posteriormente, se llevará a cabo la supervisión del trabajo de los alumnos de forma personalizada. Para dicha supervisión y evaluación, los estudiantes serán repartidos entre el profesorado según las afinidades previamente establecidas durante el curso.

  • Lugar de impartición: Por determinar
  • Material necesario: Ordenadores portátiles
  • Plazas y perfil (año de matriculación en doctorado): 20 plazas. Es posible inscribirse durante cualquier año del doctorado.
  • Necesidad de acreditación de conocimientos previos: No es necesario acreditar conocimientos previos
  • Evaluación: Se evaluarán los análisis realizados por los estudiantes durante el periodo de supervisión de trabajos y se podrá valorar la actitud en clase y tutorías.
  • Justificación académica:

La obtención de datos de diverso tipo, tanto de manera experimental como observacional, requiere necesariamente unos conocimientos estadísticos suficientes para su adecuado análisis, y así obtener las conclusiones pertinentes. En este curso de doctorado, los alumnos podrán aprender las técnicas más comunes para el análisis de datos y podrán aplicar los conocimientos que adquieran sobre los ficheros de datos que dispongan para la realización de sus Tesis doctorales. Los análisis que hagan con dichos ficheros serán supervisados inicialmente por el profesorado de la asignatura.

  • Objetivos educativos, profesionales y competencias generales adquiridas:

El objetivo del curso es que los estudiantes de doctorado conozcan y apliquen los métodos estadísticos más utilizados, fundamentalmente en Biología, para que puedan utilizarlos durante la realización de sus Tesis doctorales. En las clases se utilizarán datos reales como ejemplos para una mejor comprensión.

  • El alumno sabrá:
- Construir ficheros para análisis de datos
- Utilizar determinadas herramientas de análisis según su tipo de datos
- Los paquetes de R necesarios para distintos análisis de datos fundamentales
- Los scripts de R necesarios para distintos análisis de datos fundamentales
- Ejecutar distintos análisis estadísticos de datos
  • El alumno será capaz de:
- Diseñar estudios experimentales
- Utilizar de forma básica el paquete estadístico R
- Interpretar resultados experimentales y/o observacionales básicos
- Localizar variables/factores relacionadas con nuestras variables de interés
- Elaborar modelos predictivos
  • Programa formativo:

Día 1, 9:00-12:00 (JM Conde)

Presentación del curso

Estadística básica.

Diseño experimental. Pseudoreplicación y pseudofactorialismo
Tipos de datos

Día 1, 12:30-14:30 (AJ Muñoz)

Estadística básica

Introducción a R
Correlaciones paramétricas y no paramétricas

Día 2, 9:00-11:00 (MM Rueda)

Inferencia básica

Problema de una muestra.
Problema de dos muestras independientes y apareadas.
Contrastes paramétricos y no paramétricos para una y dos muestras.

Día 2, 11:30-13:30 (F Torres)

Modelos lineales generales: Regresión lineal simple

Ajuste e interpretación de resultados.
Predicción. Calibración lineal.
Contraste de linealidad para datos repetidos.
Comprobación de asunciones

Día 3, 9:00-11:00 (F Torres)

Modelos lineales generales: Regresión lineal múltiple

Ajuste e interpretación de resultados.
Restricciones lineales.
Selección de regresores.

Día 3, 11:30-13:30 (MM Rueda)

Modelos lineales generalizados: variables explicativas cuantitativas

Regresión logística binomial y multinomial. Selección de regresores.
Regresión de Poisson.

Día 4, 9:00-11:00 (AM Aguilera)

Análisis de datos categóricos

Independencia y asociación en tablas bidimensionales.

Día 4, 11:30-13:30 (AM Aguilera)

Análisis de datos categóricos

Independencia condicional y asociación parcial.
Metodología de Mantel-Hanzel

Día 5, 9:00-11:00 (J Lorite)

Diseño de experimentos y análisis de la varianza (ANOVA).

Diseños completamente aleatorizados.
Diseños en bloques. Cuadrados latinos y grecolatinos.
ANOVA paramétrico

Día 5, 11:30-13:30 (J Lorite)

Diseño de experimentos y técnicas Anova asociadas.

ANOVA de medidas repetidas
Diseños anidados

Día 6, 9:00-11:00 (AJ Muñoz)

Contrastes múltiples no paramétricos

Muestras independientes: Análisis de Kruskal-Wallis
Muestras dependientes: Análisis de Friedman y Prueba de Cochran

Día 6, 11:30-13:30 (JM Conde)

Modelos lineales: variables explicativas cuantitativas y cualitativas

ANCOVA
Modelos y selección de modelos: AIC y AICc

Día 7, 9:00-11:00 (R Rubio)

Correlación y regresión de matrices de distancia

¿Qué es una matriz de distancia?
Análisis espacial: Análisis de Mantel simple

Día 7, 11:30-13:30 (R Rubio)

Correlación y regresión de matrices de distancia

Análisis de mantel parcial
Regresión múltiple de matrices (MRM)

Otras actividades: De manera no presencial, los alumnos irán trabajando con ficheros de datos de sus Tesis doctorales (si aún no dispusieran de ellos, se les entregarían ficheros de datos). Durante aproximadamente un mes, se llevará a cabo la supervisión del trabajo de los alumnos de forma personalizada. Para dicha supervisión y evaluación, los estudiantes serán repartidos entre el profesorado según las afinidades previamente establecidas.

Taller de escritura de textos científicos con LaTeX y control de versiones con Git

  • Profesorado:

Miguel Burgos Poyatos. Dpto. de Genética. Facultad de Ciencias.

  • Duración del curso (horas teóricas/prácticas):

20 horas en modalidad virtual + 20 horas no presenciales/trabajo personal

  • Calendario y horario:

6, 8, 10, 13, 15, 17, 20 de abril 2020 de 11:00 a 14:00 todos los días excepto el viernes 17 que será de 12:00 a 14:00.

  • Lugar de impartición:

Virtual.

  • Plazas y perfil (año de matriculación en doctorado):

El límite de plazas se establecerá conforma a las posibilidades técnicas. Es posible inscribirse durante cualquier año del doctorado. El taller está abierto tanto a doctorandos, tanto a tiempo completo como parcial.

  • Necesidad de acreditación de conocimientos previos:

No es necesario acreditar conocimientos previos

  • Evaluación:

Los alumnos crean un repositorio Git para el curso en http://Bitbucket.org donde trabajan durante todo el taller y lo comparten con el profesor que, de esta forma puede seguir todo el trabajo que realizan los alumnos tanto durante las horas presenciales como en las no presenciales. Además, un Foro en la plataforma MOODLE permite la comunicación entre todos los participantes y la resolución de dudas y cuestiones de forma abierta y visible para todos los alumnos. Al final del taller el repositorio deberá contener la presentación de un texto científico que incluya bibliografía y diversos tipos de índices así como el historial de cambios de los archivos generados y situados bajo el control de Git. Siendo evaluado por el profesor responsable de la actividad.

  • Inscripción:

La inscripción se realizará a través del siguiente enlace:

http://mendel.ugr.es/genetica/course/index.php?categoryid=14

Desde el 19/03/2020 hasta completar el límite de plazas.

  • Justificación académica:

El taller está directamente enfocado a la escritura de la Tesis Doctoral. Los alumnos aprenden a utilizar el sistema de composición de textos LaTeX para escribir textos científicos, manejo automático de la bibliografía, y generar documentos en distintos formatos a partir del código fuente. Asimismo aprenden a utilizar el sistema de control de versiones Git, que resulta de especial interés para la administración de trabajo colaborativo, como la redacción conjunta de artículos de investigación o las correcciones de la memoria de la Tesis doctoral por parte de sus directores, por lo que es recomendable que tanto alumnos como sus directores asistan conjuntamente a este taller.

EDCTI LECTURE SERIES: Communication Technologies for IoT

  • Actividad aplazada
  • Dr Klaus Mößner. University of Technology Chemnitz & University of Surrey.
  • Abstract. The talk will look into the communication aspects of IoT deployments, it will discuss the various technologies, the need and levels on which interoperability may be needed and is implemented and will look into how to make sure that there is enough capacity to connect all those sensors and actuators that are at the core of IoT deployments. The session will include communication technologies for IoT from narrow to wideband, and ad hoc to cellular.
  • Dr Klaus Mößner is Professor for Communications Engineering at the University of Technology Chemnitz, and also Professor in Cognitive Networks at the Institute for Communication Systems and the 5G Innovation Centre, at the University of Surrey. Klaus was involved in more than 25 projects in the Cognitive Communications, Service provision and IoT areas. He was responsible for the work on cognitive decision-making mechanisms in the CR project ORACLE, led the work on radio awareness in the ICT FP7 project QoSMOS, and led the Speed5G, iKaaS, IoT.est, and SocIoTal projects. Klaus was the founding chair of the IEEE DYSPAN Working Group (WG6) on Sensing Interfaces for future and cognitive communication systems. His research interests include cognitive networks, IoT deployments and sensor data-based knowledge generation, as well as reconfiguration and resource management; he is senior member of the IEEE. At current he does lead the EU-Taiwan project Clear5G investigating the extensions 5G systems need to serve the particular requirements of the Factories of the Future. Klaus is leading a research group investigating algorithms and mechanisms to gain knowledge and understanding of situations in and around autonomous vehicles.
  • Se emitirá un certificado de asistencia para los estudiantes de cualquier programa de doctorado de la UGR que asistan al evento.

International Research and Educational Collaboration. Strategies 1st Workshop

  • Actividad pendiente de confirmación
  • Objetivos:

En este Workshop se pretende poner en contacto por primera vez a las Universidades de Granada y Jiangsu University of Technology, China, después de la forma del acuerdo marco de colaboración, para progresar hacia una relación formal y mantenida en investigación y en formación doctoral. El profesor Cabrerizo participó en abril de 2019 en el “International Research and Education Forum” celebrado en la Jiangsu University of Technology en la ciudad de Changzhou en la República Popular China.

Los contenidos de esta primera reunión se refieren a los aspectos más generales de las estrategias en investigación conjunta. Los ponentes incluyen:

• Prof. Miguel A. Cabrerizo, Universidad de Granada
• Prof. Alidad Amirfazli, University of North York, Toronto, Canadá
• Prof. Wen Li, Jiangsu University of Technology
• Prof. Miguel A. Rodríguez Valverde, Universidad de Granada

todos ellos con amplia experiencia en investigación y experiencia de trabajo conjunto.

  • Interés para los/as estudiantes de la EDCTI:

El establecimiento de vías de colaboración internacional es objetivo prioritario de la Escuela de Posgrado y de todos los Programas de Doctorado. Este Workshop puede contribuir a ese propósito, abriendo posibilidades de doctorados en cotutela, intercambios, estancias breves, etc., tanto de estudiantes como de profesorado.

  • Fechas: por confirmar
  • Programa provisional:
Time Activity Instructor
por confirmar Registration
Introduction and Welcome Prof. Cabrerizo
Strategic Thinking about Research Prof. Amirfazli
Break
Conducting International Research Collaboration (A
perspective from fast evolving China)
Prof. Li
Afternoon break
Path to Publication - part 1 Prof. Amirfazli
Path to Publication - part 2 Prof. Li
Time Activity Instructor
por confirmar Registration
Proposal writing (hands-on examples) Prof. Rodríguez-Valverde

Prof. Amirfazli
Break
Working & Research with Industry Prof. Li
Afternoon break
Recognition and Awards Prof. Amirfazli
Mentoring Principles Prof. Li

II Granada Meeting on Coastal Systems

  • Date: 7th February 2020
  • Organization:
Andalusian Inter-University Institute for Earth System Research
Doctoral Programme in Biogeochemical Flow Dynamics and Its Applications - Doctoral School in Science, Technology and Engineering – University of Granada
  • Programme:
I. Vulnerability of coastal ecosystems to climate change
9:30-10:15 Rafael Muñoz Carpena
Professor of Hydrology and Environmental Modeling at the University of Florida, USA
10:15-10:45 María Ángeles Serrano García
Postdoctoral researcher at the University of Granada, Spain
10:45-11:15 Break
II. Soils and marine sediments under global change
11:15-12:00 Juan Carlos Santamarina
Professor of Energy Resources and Petroleum Engineering at King Abdullah University of Science and Technology, Saudi Arabia
12:00-12:30 Pilar Díaz Carrasco
Postdoctoral researcher at the University of Granada, Spain
12:30-12:45 Break
III. Spatio-temporal dynamics of flood risk
12:45-13:30 Andreas P. Zischg
Associate Professor at the Institute of Geography of the University of Bern, Switzerland
13:30-14:00 Andrea Lira Loarca
Postdoctoral researcher at the University of Granada, Spain
14:00-16:00 _ Break
IV. Hands-on short course: “Risk Analysis: A Global Sensitivity and Uncertainty Analysis framework”
16:00-18:00 Rafael Muñoz Carpena
Professor of Hydrology and Environmental Modeling at the University of Florida, USA
  • Forma de solicitud: entrada libre hasta completar aforo

Cálculo Estocástico y Técnicas de Análisis Multivariante. Fundamentos y aplicaciones en Ciencias Experimentales

  • Justificación académica del curso:

Es incuestionable la importancia que en las últimas décadas ha experimentado la aplicación de numerosas técnicas probabilístico-estadísticas en múltiples campos de aplicación. La razón última de ello viene motivada por la necesidad de describir y explicar la evolución de fenómenos, no sólo desde un punto de vista cualitativo sino cuantitativo, a la vez que se hace imprescindible en múltiples ocasiones poder inferir comportamientos futuros de los sistemas que son objeto de estudio.

Los fenómenos considerados por las Ciencias Experimentales consideran tanto situaciones estáticas como dinámicas, en las cuales el fenómeno estudiado evoluciona a lo largo del tiempo (o de una variable indexada según un criterio), lo cual motiva plantearse el estudio de variables temporales que respondan a situaciones concretas relacionadas con las variables estudiadas. Asimismo, dentro del ámbito estático lo habitual es tratar con múltiples variables que no pueden ser consideradas de forma aislada, sino formando parte de un diseño complejo.

Las dos situaciones descritas conllevan la necesidad de plantear un doble enfoque sobre el cual creemos que es interesante presentar una panorámica general, sobre todo desde el punto de vista de la aplicación de las técnicas presentadas en múltiples campos. En ese sentido, la idea principal de esta actividad es ilustrar a los alumnos sobre técnicas y métodos del Análisis Multivariante y de Cálculo Estocástico, mostrando una visión general de sus fundamentos así como una perspectiva de aplicaciones en diversos campos: Biología, Ecología, Recursos Energéticos,... Asimismo están previstas sesiones de prácticas en ordenador para ilustrar los métodos introducidos mediante implementaciones en R.

Por ello el curso se ha diseñado siguiendo dos bloques diferenciados:

1. Modelización mediante procesos estocásticos.
2. Técnicas de Análisis Multivariante.
  • Contenidos:

1. Modelización mediante procesos estocásticos:

a. Visión general del concepto de proceso estocástico.
b. Cadenas de Markov y procesos de nacimiento y muerte.
c. Introducción a los procesos de difusión. Aplicación a la modelización de fenómenos de crecimiento. Inferencia y tiempos de primer paso.

2. Técnicas de Análisis Multivariante:

a. Modelo Lineal Multivariante: modelo de Regresión lineal múltiple multivariante y técnicas tipo MANOVA.
b. Técnicas de reducción de dimensiones. Técnicas de clasificación automática.
  • Duración: 27 horas.
  • Plazas: 20.
  • Perfil: Dirigido a alumnos de doctorado de EDCTI (es posible inscribirse durante cualquier año del doctorado) y alumnos del Máster en Estadística Aplicada.
  • Periodo de impartición y duración: 24, 25 y 26 de febrero; 2, 3, 4 y 5 de marzo.
  • Calendario y horario:
Fecha Hora Profesor/a Lugar
Lunes 24/2 9:00-11:00 y 11:30-13:30 h Prof.ª Pirozzi Aula G17
Martes 25/2 9:00-11:00 y 11:30-13:30 h Prof.ª Pirozzi Aula G17
Miércoles 26/2 9:00-11:00 y 11:30-13:30 h Doct. Ascione Aula de ordenadores O06
Lunes 2/3 10:00-11:30 y 12:00-13:30 h Prof.ª Cobo Aula de ordenadores O04
Martes 3/3 10:00-11:30 y 12:00-13:30 h Prof.ª Cobo Aula de ordenadores O07
Miércoles 4/3 9:00-11:00 h (1) Prof. Barrera Aula de ordenadores O01 (1)
11:30-14:00 h (2) Prof. Barrera Aula de ordenadores O04 (2)
Jueves 5/3 9:00-10:30 h Prof. Barrera Aula de ordenadores O01
Jueves 5/3 11:00-14:00 h Prof. Serrano Aula de ordenadores O08

IMPORTANTE: las clases de los días 24, 25 y 26 de febrero se impartirán en inglés por lo que es necesario contar con un nivel adecuado del idioma para su correcto aprovechamiento. El resto de clases se impartirán en español.

  • Ubicación de las aulas:
• Aula G17 (1ª planta sección de Geológicas).
• Aula de ordenadores O01 (ubicada en zona Biológicas junto al Decanato).
• Aula de ordenadores O08 (ubicada en zona Matemáticas).
  • Profesores:
• Antonio Jesús Barrera García. Universidad de Málaga.
• Beatriz Cobo Rodríguez. Universidad Complutense de Madrid.
• Enrica Pirozzi. Università degli studi di Napoli Federico II.
• Giacomo Ascione. Università degli studi di Napoli Federico II.
• Juan José Serrano Pérez. Universidad de Granada.
  • Plazo de solicitud: del 3 al 12 de febrero 2020.

Writing a research paper in English: strategies and techniques

  • Profesorado: Dra. Pamela Faber Benítez, Catedrática Departamento de Traducción e Interpretación. Universidad de Granada.
  • Duración: 31 horas (10 h presenciales + 21 trabajo personal).
  • Fechas: 20 al 24 de enero de 09:00 a 11:00h.
  • Lugar: aula de informática de la Facultad de Derecho (edif. San Pablo).
  • Plazas y perfil: 24 plazas.

Dirigido preferentemente a alumnos/as de segundo año de Doctorado.

Para el buen aprovechamiento los alumnos deben tener un nivel razonable de inglés tanto hablado como escrito (al menos, B2).

Aquellos solicitantes que adjunten al correo de solicitud certificación del nivel de inglés (B2 o equivalente) tendrán preferencia sobre el resto para la participación en el curso.

  • Plazo de inscripción: del 7 al 12 de enero 2020.

En caso de que haya más solicitudes que plazas se seleccionarán los alumnos/as según su adecuación al perfil del curso y el orden de inscripción. IMPORTANTE adjuntar certificado del nivel de inglés (ver apartado “Plazas y perfil”).

  • Programa:
1. Introduction.
1.1 English as a lingua franca in the scientific world
1.2 The need to publish
1.3 Types of paper
2. Organization.
2.1 Sections
2.2 Content
2.3 Format and Layout
2.4 Common errors
3. Language.
3.1 Syntax and sentence structure
3.2 Semantics and terminology
3.3 Style and punctuation
3.4 Common errors

Introducción a Python: Elementos básicos del lenguaje

  • Profesorado: Patricia Ruano Roca (UGR)
  • Duración: 20 horas presenciales.
  • Fechas y horario:
Fechas Horario
12, 13, 19, 20, 26 y 27 de febrero de 2020 de 16:30 a 18:30
10, 11, 17 y 18 de marzo de 2020 de 16:30 a 18:30
  • Lugar: aula Juan Campos (Facultad de Ciencias).
Se necesita portátil propio (Mac o PC).
  • Plazas y perfil: 15 plazas/edición. Dirigido preferentemente a alumnos/as de primer año de doctorado.
  • Inscripción: del 3 al 6 de febrero, rellenando el siguiente FORMULARIO
  • Justificación académica:
Python es uno de los mejores lenguajes para su uso científico y técnico. Tiene algunas características que lo hacen realmente interesante en este ámbito, como son; es interpretado, de alto nivel, muy fácil de aprender, fácilmente extensible y cuenta con una librería estándar con mucha funcionalidad.
Este lenguaje está siendo actualmente utilizado por instituciones científicas como la NASA, JPL, y otras como Google, DreamWorks, Disney, etc. Alguna de las características que hacen de Python el lenguaje ideal para cálculos científicos son:
- Es un lenguaje muy fácil de aprender, siendo el lenguaje más recomendado para usuarios que no cuentan con conocimientos de programación.
- Es de código libre, por lo que no requiere una licencia para su uso.
- Es multiplataforma, pudiéndose utilizar en diferentes Sistemas Operativos com MAC, LINUX, Windows, etc.
- Python es un lenguaje de programación real, con todas las características de un lenguaje de programación orientado a objetos, a diferencia de otros lenguajes como matlab que carecen de algunas funcionalidades en este sentido.
- Tiene multitud de módulos y librerías externos que realizan numerosas funciones de gran utilidad para científicos e ingenieros. A este respecto, módulos específicos para realizar cálculos científicos como numpy, matplotlib y scipy, han hecho que este lenguaje esté ganando cada vez más popularidad entre científicos e ingenieros.
- Se integra perfectamente con LaTeX, permitiendo el formateo de ecuaciones y la realización de figuras para artículos científicos o informes técnicos.
- Es extensible y altamente configurable. Librerías como matplotlib permiten realizar infinidad de gráficos de muy alta calidad e interactivos.
En este curso se verán los elementos básicos de un lenguaje de programación como Python; sintaxis, funciones principales, flujos condicionales y bucles, etc. El conocimiento de las bases del lenguaje es un paso previo fundamental para poder sacar el mayor rendimiento de las librerías específicas más utilizadas en los ámbitos científico y técnico.
  • Objetivos educativos, profesionales y competencias generales adquiridas
El alumno sabrá:
1.- Los elementos básicos de un lenguaje de programación
2.- Tipos de variables y su manipulación
3.- Manipulación de listas, tuplas y diccionarios
4.- Flujos condicionales if y recursivos for
5.- Funciones básicas del lenguaje
6.- Creación de funciones propias
7.- Control de código y manejo excepciones
El alumno será capaz de:
1.- Crear scripts en python para resolver problemas
2.- Leer y analizar un programa escrito en Python
3.- Manejar los principales entornos de programación con IPython (Spyder y Jupyter)
4.- Leer y escribir datos en ficheros de texto
5.- Diseñar algoritmos para la resolución secuencial de problemas
6.- Depurar programas y reconocer los principales tipos de errores
  • Programa:
Tema 1. Introducción (1h) Introducción a los lenguajes de programación Historia de Python Descarga e instalación de anaconda. La consola de Python. Partes principales del IDE Spyder.
Tema 2. Tipos básicos, variables y expresiones (4h) Tipos de datos en Python. Variables, operadores y expresiones. Instalar, importar y utilizar módulos en Python. Listas, tuplas y diccionarios.
Tema 3. Operadores y funciones (4h) Operador lógico if. Bucles for. Bucles while. Creación y utilización de funciones en Python.
Tema 4. Operación de entrada/salida y optimización de código (3h) Lectura de ficheros de texto. Escritura en archivos de texto. Módulos os y sys. Control de ficheros y directorios. Optimización de código. Tipos de errores principales en Python. Control de código y manejo excepciones.

Python avanzado para ciencia e ingeniería

  • Profesorado: José Vicente Pérez Peña (UGR)
  • Duración: 20 horas presenciales.
  • Fechas y horario:
Fechas Hora
19, 20, 26 y 27 de Marzo de 2020 16:30 a 18:30
2, 3, 16, 17, 23 y 24 de Abril de 2020 16:30 a 18:30
  • Lugar: Aula Juan Campos (Facultad de Ciencias).
Se necesita portátil propio (Mac o PC).
  • Plazas y perfil: 15 plazas. Dirigido preferentemente a alumnos/as de segundo año de doctorado con conocimientos de Python.

Para este curso es necesario acreditar un conocimiento básico del lenguaje Python 3. Con el fin de evaluar los conocimientos de Python requeridos, antes del inicio del curso se realizará un cuestionario online a los solicitantes. Los estudiantes que no superen la prueba, no se admitirán en el curso.

  • Plazo de inscripción: 2 al 8 de marzo 2020.
  • Forma de inscripción: rellenar el siguiente FORMULARIO.

En caso de que haya más solicitudes que plazas se seleccionarán los alumnos/as según su adecuación al perfil del curso y el orden de inscripción.

  • Justificación académica:
Python es uno de los mejores lenguajes para su uso científico y técnico. Tiene algunas características que lo hacen realmente interesante en este ámbito, como son; es interpretado, de alto nivel, muy fácil de aprender, fácilmente extensible y cuenta con una librería estándar con mucha funcionalidad. Este lenguaje está siendo actualmente utilizado por instituciones científicas como la NASA, JPL, y otras como Google, DreamWorks, Disney, etc. En el ámbito científico y técnico, python se está abriendo paso de forma firme gracias a librerías específicas como numpy, matplotlib y scipy. El uso de estas librerías ofrece a los usuarios de Python una infinidad de recursos matemáticos y científicos para la resolución de problemas complejos y la creación de gráficos de muy alta calidad.
Algunas de las operaciones básicas utilizadas en cálculo y programación científico-técnica incluyen matrices, integrales, ecuaciones diferenciales, estadística, etc. Python en su paquete básico no cuenta por defecto con funciones para realizar este tipo de cálculos directamente. Así mismo, los tipos básicos de variables de Python no están optimizados para el manejo de gran cantidad de datos.
NumPy y SciPy son dos librerías muy potentes que cuentan con toda esta funcionalidad de la que carece el paquete básico de Python, y por tanto que posibilitan la utilización de este lenguaje para fines científicos y técnicos. La librería de numpy se especializa en el procesado numérico utilizando matrices multidimensionales, y permite un cálculo matricial directo al igual que programas especializados como matlab. Así mismo cuenta con métodos y funciones para la creación, manejo, redimensionado, etc., de matrices, lo cual reduce considerablemente el esfuerzo de programación requerido en otros lenguajes.
La librería de matplotlib es una librería gráfica que toma todas las ventajas de numpy. Permite la creación de infinidad de gráficos de alta calidad (ráster y vectorial), así como la modificación de todas sus características. Matplotlib no solo se integra perfectamente con numpy, sino que permite el lenguaje de marcado de LaTeX, pudiendo crear gráficos de muy alta calidad para publicaciones científicas e informes técnicos.
SciPy va un paso más allá, y utiliza toda la funcionalidad de numpy para realizar cálculos matemáticos avanzados como la integración, diferenciación, algebra lineal, no lineal, etc. También cuenta con multitud de funciones de alto nivel para el tratamiento estadístico de los datos.
Una lista completa de todas las funciones de numpy, matplotlib y scipy ocuparía cientos de páginas, por lo que en este curso se tratarán las funciones más utilizadas. Se introducirá al alumno en las rutinas de trabajo con estas librerías y a la resolución de los problemas más comunes en ciencia e ingeniería. Con este curso también se pretende que el alumno tenga los conocimientos necesarios para entender la documentación de estas librerías con el fin de capacitarlo para poder utilizar funcionalidad específica de las mismas no tratada en este curso.
  • Objetivos educativos, profesionales y competencias generales adquiridas
El alumno sabrá:
1.- Manejo de matrices multidimensionales con numpy
2.- Funciones básicas para la creación y utilización de matrices de numpy
3.- Lectura-escritura en disco de datos
4.- Creación y representación de funciones matemáticas
5.- Creación de distintos gráficos con matplotlib
6.- Modificación de símbolos y leyendas
7.- Análisis de imagen con scipy
El alumno será capaz de:
1.- Crear y modificar gráficos
2.- Integrar LaTeX directamente en un gráfico
3.- Representar funciones y resolver ecuaciones matemáticas
4.- Entender la documentación de las librerías de Python
5.- Realizar cálculos matemáticos de alto nivel y resolución de problemas complejos
  • Programa formativo:
Tema 1. Manejo de datos con numpy (4h) Constantes y funciones de numpy. Arrays de numpy. Métodos para la creación de arrays. Operaciones con arrays. Indexado y slicing en arrays. Leer y guardar arrays en archivos de texto.
Tema 2. Representación gráfica con matplotlib (4h) Representación básica de funciones Representación de varias curvas. Representación de nube de puntos Representación de histogramas y boxplots. Definiendo colores y símbolos. Añadiendo leyendas y etiquetas. Control de ejes. Representación de múltiples figuras
Tema 3. Análisis numérico con scipy (2h) Ajuste e interpolación de datos. Tratamiento multidimensional de imágenes con ndimage
Tema 4. Breve introducción a cython (2h). Creación y compilación de scripts usando Cython. Elementos básicos del lenguaje. Optimización de código con Cython.

Herramientas para el desarrollo de la Investigación

  • Profesores/as que la imparten: Anne-Vinciane Doucet, Antonio Fernández Porcel, Mª Ángeles García Gil, Esteban López García y Daniel Marín Conesa

Primera Edición

  • Fechas de realización: del 3 al 5 de marzo de 2020
  • Plazo de solicitud: del 10 al 16 de febrero de 2020
  • Forma de inscripción: rellenar el siguiente FORMULARIO

Segunda Edición

  • Fechas de realización: 31 de marzo, 1 y 2 de abril de 2020
  • Plazo de solicitud: del 3 al 8 de marzo 2020
  • Forma de inscripción: rellenar el siguiente FORMULARIO

  • Lugar de realización: Aula Biblioteca Derecho (Ubicación Calle Duquesa)
  • Horario: de 10:00 a 13:00
  • Perfil: Dirigido a alumnos/as de primer año
  • Nº Alumnos: 30
  • Programa de la actividad:
1. Perfil de investigador:
- El perfil de investigador. Utilidad y necesidad.
- Necesidad de normalización del nombre de investigador. -Números de identificación: ORCID, ResearcherID (WoS), Author ID (Scopus).-Perfil y difusión de la investigación: ventajas y “herramientas”: UGR-Investiga, Google Scholar, Academia.edu, ResearchGate. Dialnet-El perfil de investigador y la evaluación de la producción científica. ANECA, DEVA y SICA. El CVN.
2. Bases de datos:
- Bases de datos en: Ciencias, Tecnologías e Ingenierías y Ciencias de la Salud: JCR-Science, JCR-Social Science WOS, SCOPUS
- Bases de datos en: Humanidades, Ciencias Sociales y Jurídicas: JCR-Social Science, Arts and Humanities Citation Index, Dialnet
3. Gestores bibliográficos:
- Introducción a los gestores bibliográficos
- Gestores bibliográficos: Mendeley, Flow, Endnote




    

Actividades Generales y de otras Escuelas de Doctorado

Actividades específicas de los programas de doctorado

Actividades transversales anteriores